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ABSTRACT 

Almost 17% of causes of death due to natural hazards are the product of landslides. Most of them occur in the most deprived places of less developed 
countries, coexisting a lethal combination of factors that point to this type of tragedies: the natural and the human factor. On the other hand, after a 

disaster, health care needs and priorities may change; in this sense, the food security of refugees, the supply of drinking water, the disposal of excreta 

and solid waste, the need for shelters, attention to personal hygiene needs, vector control, attention to injuries after the cleanup activities and the 
conduct of public health surveillance becomes a priority. To mitigate the disruption, public health authorities must act promptly to avert the adverse 

effects of the disaster, prevent further damage, and restore public service delivery as soon as possible. In this sense, public health surveillance, 

epidemiology, can identify local problems and establish priorities for decision-making in the health area. In this article, mention is made of one of the 
most alarming events that occurred in Sillapata, Peru, where a level 4 landslide affected the infrastructure of the population. Considering an 

established statistical model, it is possible to predict the zoning of higher risks, and thus establish the most appropriate territorial planning and 

epidemiological surveillance when similar events reach this population or other populations of the Peruvian State. 

Keywords: landslide, landslide predictive models, epidemiology surveillance, epidemiological control. 

RESUMEN 

Casi el 17 % de causas de muerte por amenazas naturales es producto de los deslizamientos de masa. La mayoría de ellas ocurre en los sitios más 

deprimidos de los países menos desarrollados coexistiendo una combinación letal de factores que apuntan a este tipo de tragedias: el factor natural y 

el humano. Por otra parte, después de un desastre, las necesidades y prioridades de cuidado de salud pueden cambiar; en ese sentido, el 

aseguramiento alimenticio de los refugiados, el suministro de agua de potable, la disposición de excretas y desechos sólidos, la necesidad de 

albergues, la atención de las necesidades de higiene personal, el control de vectores, la atención de las lesiones después de las actividades de 

limpieza y la conducción de la vigilancia en salud pública se hace prioritarias. Para mitigar el trastorno, las autoridades de salud pública deben 
actuar con prontitud para evitar los efectos advesos del desastre, prevenir más daños y restaurar la prestación de servicios públicos lo más pronto 

posible. En ese sentido, la vigilancia en salud pública, la epidimiología, puede identificar los problemas del lugar y establecer prioridades para la 

toma de decisiones en el área de la salud. En este artículo, se hace mención a uno de los eventos más alarmante ocurrido en Sillapata, Perú, donde 
un deslizamiento nivel 4 afectó la infraestructura de la población. Tomando en cuenta, un modelo estadístico establecido es posible predecir la 

zonificación de mayores riesgos, y de esta manera establecer la planificación territorial y de vigilancia epidemiológica mas adecuada cuando 

eventos similares alcance a esta población o a otras poblaciones del Estado Peruano. 

Palabras clave: deslizamiento de masa, modelos predictivos de deslaves, vigilancia epidemiología, control epidemiologico. 
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Introduction 

Almost 17% of causes of death from natural hazards are the product of landslides. Most of them occur in the 

most depressed areas of less developed countries. In this case, there is a lethal combination of factors that point to this 

type of tragedies: the natural and human factors, which fail to equate the same situation for this type of event in 

developed countries; becoming a system with great economic and human losses (Kalsnes, B., Lacasse, F., & Nadim, F. 

(2010). Living with Landslide Risk. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 41(4). Available at: 

https://www.researchgate.net/publication/267423148 (Accessed July 2022)). In this sense, Peru does not escape this 

situation, being nestled between the Pacific Ring of Fire and the Andes Mountains ranges that, united by the South 

Pacific Anticyclone, achieve a perfect, diverse and complex combination of its geography, hydrometeorology, and 

geology, among other physical characteristics, which impart the richness of biodiversity and landscapes, but which also 

expose it to various natural phenomena that have affected this country since time immemorial. According to the 

international disaster data agency EM-DAT (CRED/ UC Louvain (2020). EM-DAT Public, the International Disaster 

Database. Available at: https://public.emdat.be/mapping (Access July 2022), between 1,900 and 2021, Peru was ranked 

as the sixth country with the highest number of massive landslides but at the same time, with the highest number of 

fatalities (9,977 victims) and the highest estimated economic damage: $4,340,902,000 worldwide. According to the 

Civil Defense Institute (National Institute of Civil Defense-INDECI (2018). Guide and train for a prepared country. 

Available at: https://www.indeci.gob.pe/preparacion/peligros/ (Access July 2022)), during the first six months of each 

year, landslides are the second most frequent emergency, and recurring in jungle and mountainous areas. 

On the other hand, after a disaster, health care needs and priorities may change after the emergency phase, in this 

sense, the food security of refugees, the supply of drinking water, the disposal of excreta and waste solids, the need for 

shelters, attention to personal hygiene needs, vector control, care for injuries after cleanup activities, and conducting 

public health surveillance are priorities (PAHO, Pan American Health Organization. (1983). Health services 

organization in the event of disaster. Washington, D.C. Available at: https://www.paho.org/en/health-emergencies 

(Accessed July 2022). In this sense, after an environmental disaster, such as a landslide, and where the quality of the 

water has decreased, boiling it is a very good recommendation to ensure its drinkability. The Environmental Protection 

Agency (EPA) recommends boiling water for at least one minute, but it must increase one more minute of boiling every 

1000m above sea level (WHO, World Health Organization. (1993). Guidelines for drinking-water quality: 

recommendations. Volume 1, 2nd ed., 1-29. Available at: 

https://apps.who.int/iris/bitstream/handle/10665/44584/9789241548151_eng.pdf  (Accessed July 2022)), which allows 

to inactivate bacterial pathogens such as: V. cholerae, Yersinia enterocolitica, enterotoxigenic E. coli, Salmonella, 

Shigella sonnei. Campylobacter jejuni and protozoa such as Cryptosporidium parvum, Giardia lamblia and Entamoeba 

histolytica (CDC, Centers for Disease Control and Prevention. (1994). Assessment of inadequately filtered public 

drinking water--Washington, D.C., December 1993. MMWR. Morbidity and mortality weekly report, 43(36), 661–669. 

Available at: https://pubmed.ncbi.nlm.nih.gov/8072479/ (Accessed July 2022)). In the case of large populations, the 

immediate availability of large sources such as rivers and lakes, purification should be done using some antibacterials 

such as iodine, potassium permanganate or chlorine in order to reduce microbial contamination (PAHO, 1983. Op. Cit.; 

Kozlicic, A., Hadzic, A., & Bevanda, H. (1994). Improvised purification methods for obtaining individual drinking 

water supply under war and extreme shortage conditions. Prehospital and disaster medicine, 9(2 Suppl 1), S25–S28. 

https://doi.org/10.1017/s1049023x00041145). However, in some cases, efficient filtration systems are necessary to 

eliminate chlorine-resistant parasites such as Cryptosporidium parvum (CDC, 1994. Op. Cit.).  

In the case of improper disposal of feces, it can adversely affect public health, and can transmit diseases such as 

typhoid fever, cholera, bacillary and amoebic dysentery, hepatitis, poliomyelitis, schistosomiasis, various helminthiasis 

and common gastroenteritis (Noji, E. (2000). Impact of disasters on public health. Pan American Health Organization. 

Available at: https://iris.paho.org/bitstream/handle/10665.2/754/9275323321.pdf?sequence=1&isAllowed=y (Accessed 

July 2022); Feachem, R. G., Bradley, D. J., & Garelick. H. (1983). Sanitation and disease: health aspects of excreta and 

wastewater management. New York: John Wiley & Sons. Available at: 

https://documents.worldbank.org/en/publication/documents-reports/documentdetail/704041468740420118/sanitation-

and-disease-health-aspects-of-excreta-and-wastewater-management (Accessed July 2022)). Likewise, the proper 

disposal of urine can be an important public health consideration. Emergency projects dispose of human excreta by 

burying, burning, or composting (manure) (Feachem et al., 1983. Op. Cit.); in undeveloped areas, the population will 

require burial of feces or use in dug latrines (UNICEF, United Nations Children's Fund. (1992). Assisting in 

emergencies: a resource handbook for UNICEF field staff. New York, 34-365. Available at: 

https://www.humanitarianlibrary.org/resource/emergency-field-handbook-guide-unicef-staff-0 (Accessed July 2022)). 

In the case of shelters with large populations, it is important to have an important source of drinking water and excreta 

management through environmental investigations. On the other hand, the risk of communicable diseases must be 

minimized due to overcrowding (Noji, 2000. Op. Cit.). 
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However, in a disaster situation, such as landslides, the relationships between people and their environment are 

disrupted as well as the relationships between groups of individuals. To mitigate the disruption, public health authorities 

must act promptly to avert the adverse effects of the disaster, prevent further damage, and restore public service 

delivery as soon as possible. In this sense, public health surveillance, epidemiology, can identify local problems and 

establish priorities for decision-making, evaluating the effectiveness of these activities. Thus, disaster epidemiologists 

apply various descriptive and analytical techniques to study the natural phenomenon. The epidemiologist quickly 

defines the nature and extent of the health problems, identifying the population group at risk, thus optimizing the 

response, the effectiveness of the efforts, and the recommendation to reduce the consequences of the disaster (Noji, E. 

K. (1992). Disaster epidemiology: challenges for public health action. Journal of public health policy, 13(3), 332–340. 

Available at: https://pubmed.ncbi.nlm.nih.gov/1401051/ (Accessed July 2022); Glass, R. I., & Noji, E. K. (1992). 

Epidemiologic surveillance following disasters. In: Halperin W, Baker EL, editors. Public Health Surveillance. New 

York: Van Nostrand Reinhoid; 1992. p.195-220. Available at: 

http://cidbimena.desastres.hn/pdf/eng/doc2698/doc2698.htm (Accesses July 2022)). 

In this article, mention is made of one of the most alarming events that occurred in the Huanuqueña Sierra, in 

Peru. In this event, a level 4 landslide occurred in the Sillapata district, affecting the infrastructure of the population. For 

their part, national authorities, such as INGEMMET (Geological, Mining and Metallurgical Institute-INGEMMET 

(1996). Geomorphological map of Peru at a scale of 1:100,000. Lima Peru; Geological, Mining and Metallurgical 

Institute-INGEMMET (2019). Technical Report No. A6915. Geological evaluation of the Sillapata sector - First report. 

Lima Peru, Available at: https://un-spider.org/geological-mining-and-metallurgical-institute-peru-ingemmet (Accessed 

July 2022)), recommended the relocation of the affected population. Despite the advances in the disaster risk 

management system, the systematic evaluation of hazard, vulnerability and risk is still limited, showing the inefficiency 

of the post-disaster stages. In response, rehabilitation and reconstruction leaves the population in a very precarious state. 

To date, the databases at the national level are very scarce, which makes it difficult to protect the population and invest 

in future disaster impacts due to natural phenomena. In this case, massive landslides, caused by internal geodynamic 

phenomena, are characterized by having a great impact on Andean environments such as the Peruvian highlands, many 

of them violent and recurring, so it is important to have enough studies to make a preliminary identification of the 

places with the greatest risks. Considering an objective point of view based on statistics, the zoning of higher risks is 

possible, useful to know the probable effects associated with landslides, and thus establish territorial planning. In this 

sense, the Sillapata district will be studied to determine the factors that could intervene to a greater degree in modeling 

its susceptibility to landslides. The results will lead to zoning metrics that are closer to reality. In addition to the above, 

the zoning would also allow real-time surveillance of epidemiological events that could affect the area in studies or 

other areas with similar problems. 

Methodological development 

The methodology followed is summarized in Figure 1. 

 

Estimation criteria: 

 

Ecuation: 

EP= y · CF 

Probability plot: 

 

Estimation of “y” Risk of massive movement probability plot “EP” estimate of potential epidemic risk  

Figure 1. Methodological development 

https://pubmed.ncbi.nlm.nih.gov/1401051/
http://cidbimena.desastres.hn/pdf/eng/doc2698/doc2698.htm
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The study area corresponded to the District of Sillapata, in the Provinces of Dos de Mayo/Huánuco, Peru, 

located in the Andean zone of the country and frequently hit by external geodynamic phenomena. The district limits, 

according to the INEI, are the following (Table 1). 

Table 1. Geographical location according to the UTM System Zone 18S – Datum WGS84 

Spot East South Altitude 

North limit point 306600 8923808 3068 

West limit point 301960 8916457 3176 

South limit point 306549 8908671 3572 

East limit point 309771 8921176 3416 

Lowest point 305910 8923109 3076 

Highest point 307031 8916903 4073 

Capital 305478 8920898 3423 

Information gathering 

The data collected was taken from different sources. The data on past landslides were provided by the Civil 

Defense Secretariat of the Sillapata District Municipality, the Dos de Mayo Provincial Highway Institute and the 

SINPAD of the National Civil Defense and Huánuco Regional Government. The geographic and satellite information of 

the scene was taken from NASA's Alos Palsar digital elevation model (Available at: https://search.asf.alaska.edu/#/  

(Accessed July 2022)) completed with two quads of the satellite mosaic PlanetScope during the monthly period of 

February 2021 (QGIS Planet_Explorer. (2021). Google-Satellite satellite mosaic in high definition; WMS Geology 

Service Map 1:100'000–INGEMMET and NATIONAL PROVIAS, Available at: https://mappinggis.com/2021 

/09/how-to-download-google-satellite-images-with-qgis/ (Accessed July 2022)). 

Points inventory 

Due to the scant geographic information collected, field work and satellite photointerpretation were carried out 

to identify landslide and non-landing points. Field surveys were made from the three highest peaks to the lowest areas, 

taking the coordinates of previous and active landslide events. In the case of inaccessible sites, the data was taken at the 

foot of the landslide. Some of the "no slip" points were taken in the field and others were taken with the support of the 

Google-Satellite high-definition mosaic. All these points, 66 landslide points and 110 non-slide points, were registered 

in landslide inventory files under *csv format. 

Mapping of physical factors of the terrain 

The physical factors used in the statistical model were substitutes for physical parameters described in the 

literature that influence the materialization of massive landslide phenomena whose large-scale estimation is not feasible 

(Pourghasemi, H; Sadhasivam, N; Amiri, M; Eskandari, S & Santosh, M. (2021). Landslide susceptibility assessment 

and mapping using state-of-the-art machine learning techniques. Springer, Natural Hazards. Available at: 

https://doi.org/10.1007/s11069-021-04732-7 (Accessed July 2022) (Table 2). 

Table 2. Source and spatial resolution of the variables used 

Variable Source Resolution / scale 

Elevation MDE ALOS PALSAR 12.5m x 12.5m 

Slope (degrees) MDE ALOS PALSAR 12.5m x 12.5m 

flow length MDE ALOS PALSAR 12.5m x 12.5m 

TWI MDE ALOS PALSAR 12.5m x 12.5m 

NDWI PlanetScope Mosaic 4.68m x 4.68m 

NDVI PlanetScope Mosaic 4.68m x 4.68m 

plant cover PlanetScope Mosaic 4.68m x 4.68m 

geology Geological map - INGEMMET 1: 100,000 

Distance to water flows MDE ALOS PALSAR 12.5m x 12.5m 

Distance to tracks Road network - PROVIAS Does not have 

plane curvature MDE ALOS PALSAR 12.5m x 12.5m 

profile curvature MDE ALOS PALSAR 12.5m x 12.5m 

The distribution and frequency of each factor or variable is determined in Figure 2. 

https://search.asf.alaska.edu/#/
https://mappinggis.com/2021%20/09/how-to-download-google-satellite-images-with-qgis/
https://mappinggis.com/2021%20/09/how-to-download-google-satellite-images-with-qgis/
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Figure 2. Spatial distribution and frequency of physical factors used in the present work 
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The geographic information collected was processed and georeferenced in UTM 18S projection and WGS84 

datum, generating the 12 most important physical factors (Table 2). These physical factors were mapped in raster 

format, aligned in 4.68 m pixels according to the Sillapata district polygon. The results obtained are shown in individual 

maps (Figure 3). The variables: Elevation, Slope, Flow Length, TWI, Distance to water flows, Curvatures, NDWI and 

NDVI were generated by remote sensing of digital elevation models and satellite images with the support of GIS tools. 

The Vegetation Cover variable, allowed to determine the type of vegetation located that grows on the ground 

based on the economic activities that take place in that place. Points were collected and interpreted using high-

resolution Google-Satellite images, based on the Gdal and Scikit Learn libraries (Duchesnay, E., Gramfort, A., Grisel, 

O., Michel, V., Pedregosa, F., Thirion, B., & Varoquaux, G. (2011). Scikit-learn: Machine Learning in Python. Journal 

of Machine Learning Research, 12, 2825–2830. Available at: 

https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf (Accessed July 2022)). The vegetation cover 

area was grouped into five main categories: Crops, Forestry, Wetlands, Grasslands, and Bare Soil. 

The Geology of the model was extracted from the National Geological Maps of INGEMMET (Geological, 

Mining and Metallurgical Institute-INGEMMET (1996). Geomorphological map of Peru at a scale of 1:100,000. Lima 

Peru. Geological, Mining and Metallurgical Institute-INGEMMET (2019). Technical Report No. A6915. Geological 

evaluation of the Sillapata sector-First report. Lima Peru, Available at: https://un-spider.org/geological-mining-and-

metallurgical-institute-peru-ingemmet (Access July 2022)), identifying five geological units (Table 3). Finally, the 

variable Distance to highways was generated from the database generated by PROVIAS, updated according to high-

resolution images from Google's satellite. Using GIS it was possible to determine the layer of Euclidean distances of 

roads in the entire district. All these variables were trained and validated according to the proposed model. Table 4 

shows a summary of the variables considered in the new general database: the independent ones (physical variables), 

the dependent ones (slip susceptibility) and the location of each point. 

Exploration of physical factors 

In the optimization of the model, the variables were reviewed, refined and selected through a statistical analysis 

of the behavior of the 176 points and their data. The 10 quantitative independent variables were analyzed by correlation, 

while the 2 qualitative variables were analyzed using a mosaic graph; the process made it possible to discard duplicate 

variables due to correlation. 

Table 3. Geological formations in the study area 

Name Training lithology Age 

PE-cm Cashew Complex  Schists and gneiss. Outcrop of brown to gray slates, schists, and phyllites 
Neo-

proterozoic 

JTr-p Pucara Group Blue-grey limestones in medium to coarse banks with chert nodules 
Triassic - 
Jurassic 

Ps-m Mitu Group 
Purple andesite and lava flows, pyroclastic andesite, pebble conglomerate of andesite and red sandstone in 
varying proportions 

Early 
Paleogene 

Q-al Alluvial Deposits Accumulation of gravel, sand, silt and clays, with sub-angular to angular clasts of different composition  

Qp-lu 
Formation The 
Union 

Coarse polymictic conglomerates and semi-consolidated sandstones in a sandy matrix Pleisto I dine 

Source: INGEMMET, 1996. 

Application of the generalized linear model – glm 

The generalized linear model-glm was proposed using the independent variables (continuous and categorical) 

and the dependent variable (binomial variable), in this way the glm logistic function and the training database were 

used, resulting in the AIC value of the adjustment of said model (Table 4) (Aristizábal, E., & Ospina-Gutiérrez, J. 

(2021). Application of artificial intelligence and machine learning techniques for the evaluation of susceptibility to mass 

movements. Mexican Journal of Geological Sciences, 38(1), 43-54. 

http://dx.doi.org/10.22201/cgeo.20072902e.2021.1.1605). 

Adjustment and simplification of the model 

The model was adjusted according to the Akaike Information Criterion in order to simplify it and select the 

adjustment function to the field data. This model worked with the most significant variables. 

Susceptibility map prediction and validation 

With the final model, the entire district territory was predicted and classified by the Natural break method 

(Pourghasemi, H; Sadhasivam, N: Amiri, M; Eskandari, S. & Santosh, M. (2021). Landslide susceptibility Assessment 

and mapping using state-of-the-art machine learning techniques Springer, Natural Hazards. 

https://doi.org/10.1007/s11069-021-04732-7; Chen, W., Pourghasemi, H. R, Zhang, S., & Wang, J. (2019). A 

comparative study of functional Data Analysis and Generalized Linear Model Data–Mining Techniques for Landslide 

Spatial Modeling. Elsevier, 467-484. https://doi.org/10.1016/B978-0-12-815226-3.00021-1) in 4 levels of susceptibility 

https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
https://un-spider.org/geological-mining-and-metallurgical-institute-peru-ingemmet
https://un-spider.org/geological-mining-and-metallurgical-institute-peru-ingemmet
http://dx.doi.org/10.22201/cgeo.20072902e.2021.1.1605
https://doi.org/10.1007/s11069-021-04732-7
https://doi.org/10.1016/B978-0-12-815226-3.00021-1


                                                                                                        Noviembre-Diciembre 2022, Vol. LXII (6), 1401-1412 

1407 
Boletín de Malariología y Salud Ambiental. Volumen LXII. Noviembre-Diciembre, 2022. ISSN:1690-4648   

to massive landslides: low, medium, high and very high. The model was validated with 20% of the points from the 

general database using the ROC curve and the AUC-COR to determine its discriminative capacity (Table 5). 

Table 4. Characteristics of the variables (dependent and independent) used 

floating rate Variable Unit of measurement Study area Guy Occurrence range 

SAW 1- Elevation meters geomorphology 
continuous 
quantitative 

3085msnm to 4140msnm 

SAW 2- slope degrees sexagesimal degrees geomorphology 
continuous 
quantitative 

0° to 70.91° 

SAW 3- flow length meters hydrogeology 
continuous 
quantitative 

0m to 23027.13m 

SAW 4- TWI Percentage geomorphology 
continuous 
cuantitative 

1,618% to 21,503% 

SAW 5- NDWI dimensionless land use 
continuous 
quantitative 

-0.828 to -0.096 

SAW 6- NDVI dimensionless land use 
continuous 
quantitative 

-0.302 to 0.991 

SAW 7- plant cover dimensionless land use 
Qualitative 
categorical 

1(Crops) 2(Forest) 3(Wetland) 
4(Grassland) 5(Bare soil) 

SAW 8- geology dimensionless geology 
Qualitative 
categorical 

2(Q-al) 3(Qp-lu) 5(JTr-p) 6(PE-cm1) 
7(PE-cm2) 9(Ps-m) 

SAW 
9- Water flow 

distance 
meters Hydrography 

continuous 
quantitative 

0m to 806.42m 

SAW 10- Track distance meters land use 
continuous 
quantitative 

0m to 2610.82m 

SAW 11- plane curvature dimensionless geomorphology 
continuous 
quantitative 

-12,504 to 9,695 

SAW 
12- profile 

curvature 
dimensionless geomorphology 

continuous 
quantitative 

-13,073 to 5,805 

YOU 
landslide 
susceptibility 

dimensionless Risk management 
Qualitative 
binomial 

0 to 1,000 

VI: Independent variable. DV: Dependent variable. 

The correlation between the pairs Length of flow-TWI and Curvature of the plane-TWI did not exceed the value 

|0.900| and was retained for further analysis. The NDWI–NDVI pair presented a correlation close to 1,000. NDVI has a 

history as an influential variable (Chen et al., 2019. Op. Cit.; Mohamed, A. & Pourghasemi, H. (2020). Landslide 

susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir 

Region, Saudi Arabia. Geoscience Frontiers Magazine. Available at: https://doi.org/10.1016/j.gsf.2020.05.010), while 

NDWI an adaptation of the original equation (Gao, B. (1996). NDWI–A Normalized Difference Water Index for 

Remote Sensing of Vegetation Liquid Water From Space. Elsevier, 58, 257-266. Available at: 

https://doi.org/10.1016/S0034-4257(96)00067-3 (Accessed July 2022); McFeeters, S. K. (1996). The use of the 

Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote 

Sensing, 17(7), 1425-1432. https://doi.org/10.1080/01431169608948714) may be subject to variations in representation, 

so it was discarded. 

Table 5. Correlation matrix of quantitative variables 

 
Elevation pending length Flow TWI NDWI NDVI Dist. Rivers Distance Tracks curve flat curve profile 

Elevation 1,000 -0.126 -0.035 -0.015 0.108 -0.145 0.405 0.207 0.028 -0.053 

pending -0.126 1,000 -0.050 -0.225 0.118 -0.097 -0.111 -0.047 -0.006 -0.001 

length Flow -0.035 -0.050 1,000 0.855 0.072 -0.073 -0.178 0.044 -0.368 0.011 

TWI -0.015 -0.225 0.855 1,000 0.029 -0.025 -0.165 0.048 -0.502 0.159 

NDWI 0.108 0.118 0.072 0.029 1,000 -0.976 0.095 -0.061 0.091 -0.070 

NDVI -0.145 -0.097 -0.073 -0.025 -0.976 1,000 -0.119 0.095 -0.045 0.079 

Dist. Rivers 0.405 -0.111 -0.178 -0.165 0.095 -0.119 1,000 -0.053 0.149 -0.186 

Distance 
Tracks 

0.207 -0.047 0.044 0.048 -0.061 0.095 -0.053 1,000 0.110 -0.051 

curve flat 0.028 -0.006 -0.368 -0.502 0.091 -0.045 0.149 0.110 1,000 -0.476 

curve profile -0.053 -0.001 0.011 0.159 -0.070 0.079 -0.186 -0.051 -0.476 1,000 

An exploratory analysis of the qualitative variables according to figure 3, shows that the vegetation cover factor 

indicates that cover 5(bare soils) is the one with the highest concentration and to a lesser degree in cover 4 (pastures). In 

all categories there is a greater number of stable points, so that in category 1(crops) and 3(wetlands) there are no sliding 

points, while in categories 2(forestry), 4 and 5 present points slippage increasingly distributed.  As for geology, with six 

categories, class 7(PE-cm2) is the one that concentrates the largest number of points and the greatest equity between 

landslide and non-landscape points. 

https://doi.org/10.1016/j.gsf.2020.05.010
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1080/01431169608948714
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Coverage   Geology 

 

Figure 3. Mosaic chart of qualitative type variables 

Table 6. Most influential physical factors to be used in the GLM. 

Selected physical factor Designation on the model* 

Elevation Elevation 

Earring Earring 

flow length FlowLength 

TWI TWI 

NDVI NDVI 

plant cover Plant Coverage 

geology Geology 

Distance to water flows DistanceRios 

Distance to tracks DistanceWays 

plane curvature CurvatureFlat 

profile curvature CurvatureProfile 

Development of the landslide susceptibility model 

The most appropriate generalized linear model to susceptibility according to the types of research variables is 

shown in table 7. 

Table 7. Selection of the generalized linear model. 

Response variable Predictor variables Main recommended method* link function 

Nominal / Binary Categorical and continuous Logistics log (
𝜇

𝑛 − 𝜇
) 

Selection of variables and model 

Initially, the generalized linear model was processed including all the variables, but later it was adjusted to 

deviance analysis and the Akaike Information criterion. The variables selected for the final generalized linear model are 

shown below (Table 8). 

Tabla 8. Summary of the variable selection process for the final model 

Variable AIC final model Coefficient in the model 

All 194.31 Nope - 

plant cover 188.12 Nope - 

geology 185.47 Nope - 

plane curvature 183.49 Nope - 

Distance to tracks 181.63 Nope - 

flow length 179.82 Nope - 

Elevation 178.75 Nope - 

profile curvature 179.34 Yes 0.4325 

Distance to water flows 180.57 Yes -0.0029 

Earring 181.62 Yes 0.0571 

Normalized Differential 
Vegetation Index - NDVI 

182.13 Yes -4.8733 

Topographic Moisture Index - TWI 183.61 Yes 0.2951 

Independent - Yes 0.4199 

The AIC value is a relative metric for finding the model that best fits the data via the minimum AIC. When 

discarding some variables from the models, the AIC values reached the lowest values, but in the models that exclude the 

variables Profile curvature, Distance to water flows, Slope, NDVI and TWI and the AIC values showed an increase and 

they were not excluded. Thus, the final model was made up of the five variables mentioned, as presented below: 
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y =  
1

1+e - (0.420 + 0.432X1 - 0.003X2 + 0.057X3  - 4.873X4 + 0.295X5)
 

Where: 

Y is the mass landslide susceptibility value, X1 are the profile curvature values, X2 are the distance values to 

water flows, X3 are the slope values, X4 are the NDVI values, and X5 are the values of TWI. The final variables and 

the model are a unique result for the study area, and should not be generalized to other places (Aristizábal & Ospina-

Gutiérrez, (2021). Op. Cit.). Figure 4 shows the map of the entire district territory, whose prediction was based on the 

final model. The raster of the final model of susceptibility to massive landslides is made up of 3,325,477 pixels in the 

study area, whose values fluctuate between 0.0035 and 0.9999; using GIS. These values were categorized with the 

Natural breaks method (Figure 4), obtaining four terrain categories: low levels between 0.0035 to 0.2184, medium 

levels between 0.2184 to 0.3864, high levels between 0.3864-0.5936 and very high levels between 0.5936-0.9999. With 

the model of susceptibility to massive landslides applied to the Sillapata territory, it can be observed (Figure 5) that the 

largest proportion of said territory has a medium level of susceptibility (33.92%) and the smallest proportion has a very 

high level of susceptibility high (9.27%). 

 

 

 
Figure 4. Mass landslide susceptibility map and percentage of the Sillapata district, using the final logistic 

generalized linear model 

The analysis of the ROC curve of the model (figure 5) determined that the best threshold or Youden index is the 

point with a value of 0.422 (with a confidence interval of 84% to 80%), this means that the fraction below this value is 

The highest fraction of zones prone to stability, which, in turn, will be correctly identified with the model, and vice 

versa, above said threshold is the highest fraction of zones prone to mass landslides (with the presence of landslide 

susceptibility) determined as such by the model. 

 

Figure 5. ROC curve for validation of the susceptibility model to landslides 
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The area under the ROC curve (AUC-ROC) of the final model determined a capacity of 81.2% to discriminate 

areas susceptible and not susceptible to landslides. Pourghasemi et al., (2021) (Op. Cit.) obtained an AUC value of 

90.8%, while Chen et al., (2019) (Op. Cit.) obtained values with 71.8% in their model. Both authors used fewer training 

points (70%), which shows that the proportion of points per training and validation does not influence the generation of 

a more valid model. This result can be improved by refining certain processes such as determining the relationship 

between the physical factors and the model. Once the susceptibility model to massive landslides has been determined, it 

is important to know the type of relationship it has with the independent variables that were part of the final model, 

which will be useful as an approach for prospective risk management, in the process of decreasing susceptibility to 

landslides. 

Figure 4 (Lower right grid) shows that the relationship between the response variable. NDVI and Distance to 

water flows showed a negative association with landslide susceptibility, which means that at lower NDVI values or at 

shorter distances from water bodies, there is a higher spatial probability of landslides occurring. In the case of the 

Profile Curvature, Slope and TWI variables, the association was positive, that is, for areas with higher values of these 

variables, the spatial probability of landslide occurrence is also higher. NDVI values in soil range from -0.302 to 0.991, 

negative values represent man-made structures (dwelling areas); values close to 0, bare soils, water surfaces and rocks; 

while values close to 1, areas with vegetation. The negative association exposed in this work proves that the surfaces 

with more vegetation correspond to areas with less susceptibility to massive landslides and vice versa. Suárez (Suarez, 

J. (2009). Landslides: Geotechnical Analysis. Edit. Industrial University of Santander UIS, 01, 582 pp. Available at: 

https://www.erosion.com.co/deslizamientos-tomo-i-analisis -geotechnical/ (Access July 2022)) mentions that the 

vegetation slows down the rate of infiltration and reinforces the stability of the soil with its roots and the organic matter 

that is generated; however, its influence is subject to variations due to other factors such as precipitation, slope, and 

depth of the slide. The highest values of moisture accumulation of the TWI are located in areas with drainage 

depressions and the lowest values of TWI coincide with the mountainous formations (greatest slope), being the highest 

part where the least amount of water accumulates. According to the positive association, those areas with greater 

moisture accumulation (depressions and riverbanks) showed greater susceptibility to landslides, contradicting the 

inverse association exposed by Meinhardt et al. (Meinhardt, M., Fink, M., & Tunschel, H. (2014). Landslide 

susceptibility analysis in central Vietnam base don an incomplete landslide inventory: Comparison of a new method to 

calculate weighting factors by means of bivariate statistics. Geomorphology Magazine. 

https://doi.org/10.1016/j.geomorph.2014.12.042), who also explains that the influence of climatic factors can produce a 

sharp increase in pore water pressure and destabilize slopes (lower TWI), which encourages the need to study the 

temporal component (variation of climatic parameters and of the TWI variable itself) to better understand the danger of 

massive landslides. In general, seasonality should be considered at the time of data collection, to avoid variations due to 

the effect of those variables whose range is subject to temporary variations. The final model discarded the categorical 

variables: geology and land cover, while Chen et al., (2019) (Op. Cit.)  determined the high influence of variables such 

as land use and lithology, with similar sources of information to the variables of the present work, unlike the scale of 

acquisition of the geology used in the present and the lithology used in the mentioned investigations (1:100,000 and 

1:1,000,000 respectively); Since the antecedent models depend on this type of categorical variables, the spatial 

resolution of the initial variables and the scale of analysis must be carefully considered (Mohamed & Pourghasemi, 

(2020) Op. Cit.) and they can be a source of error by omitting variables with potential bias.  

The data obtained were compared to those reported by CENEPRED and published in SIGRID (Available at: 

https://sigrid.cenepred.gob.pe/sigridv3/map (Access July 2022)). In this map, areas without data were observed that 

covered 9% of the points with massive landslides confirmed by the inventory, while 83% of the points with landslides 

corresponded to areas of high and very high susceptibility. Regarding the visual comparison of both maps, the 

CENEPRED map differentiated two regions of susceptibilities, while the map of the present investigation, the 

susceptibility was more varied due to the scale of work and the change in the measurements of the variables. Finally, 

the diversity of relationships of the 'independent variable–model' type in models of susceptibility to massive landslides 

of different mountain scenarios in the world (Londono-Linares, J.P. (2017). Landslide susceptibility calculation by 

discriminant analysis. Application on a regional scale. Dyna Magazine, 84 (201), 278–289. 

https://doi.org/10.15446/dyna.v84n201.61385; Chen et al., (2019). Op. Cit.; Mohamed & Pourghasemi, (2020). Op. 

Cit.; Aristizábal & Ospina-Gutiérrez, (2021) Op. Cit.; Pourghasemi et al., (2021) Op. Cit.) show that these are not 

always valid for planning and evaluation purposes in very local spaces, if not they are worked taking into account the 

uniformity of scales between variables and the territory (Hong, S., Jung, H., & Lee, S. (2017). A support vector 

machine for landslide susceptibility mapping in Gangwon Province, Korea. Sustainability, 9(48). 

https://doi.org10.3390/su9010048; Mohamed & Pourghasemi, (2020). Op. Cit.), so it will be necessary to choose 

independent variables based on field observations. According to the statistical analyses, five physical factors intervened 

in the final model of susceptibility to massive landslides in the Sillapata district, which were later evaluated. 

The physical factors that best intervened in the final model of susceptibility to landslides in the study area were: 

degrees of slope, soil moisture index TWI, normalized differential vegetation index NDVI, distance to rivers, and 

curvature of the terrain profile. 

https://www.erosion.com.co/deslizamientos-tomo-i-analisis%20-geotechnical/
https://doi.org/10.1016/j.geomorph.2014.12.042
https://sigrid.cenepred.gob.pe/sigridv3/map
https://doi.org/10.15446/dyna.v84n201.61385
https://doi.org10.3390/su9010048
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Potential epidemic risk estimation criteria 

The geographical location of Peru locates it under an epidemiological profile under permanent risk of 

occurrences that of course can affect collective health at any moment in time and that is exceeded by the resolution 

capacity of basic health services, increasing the probability of getting sick and therefore die later. One of the causes that 

can increase the potential epidemic risk are natural disasters, including landslides or mass displacement. Under these 

circumstances, living conditions gets worse in a very short period of time, since the basic services of drinking and 

sewage water, food production and distribution, transportation, electricity, and sanitary services are interrupted, which 

in the best of cases can last a few months but in other cases, it can take years. In that same period, the population 

density increases, and they are located in shelters or unorganized housing system that increases the aforementioned 

basic necessities of life. This deterioration, more than acute, is a breeding ground for the rebirth of multiple diseases 

that overload the response capacity of health services. 

By that time, the implementation of post-disaster Epidemiological Surveillance must present a surveillance plan 

that allows controlling and reducing the risk of illnesses or deaths, proposing an epidemiological pattern that controls 

disease outbreaks. The guidelines allow: evaluating the potential epidemic risk, implementing the surveillance system 

after health emergencies and implementing the health situation room in the event of a health emergency. Several factors 

are directly related to the potential epidemic risk: change in pre-existing morbidity, ecological changes resulting from 

the disaster, displacement of populations (migrations), changes in population density, disruption of public services, 

interruption of basic services. of public health. For the Evaluation of the Potential Epidemic Risk, the following 

procedures must be followed: Evaluation of the previous epidemic activity in the area: the evaluation must review the 

trends of the diseases reported during the disaster, and they must be compared with previous years, determining the 

morbidity and mortality in the last two weeks, Evaluation of the endemic level under surveillance: with previous 

epidemiological information, it is possible to monitor the endemic channels to determine the history of possible 

outbreaks, stratify them through epidemic maps, and then, with this information, determine what type of diseases could 

be considered as tracers of post-disaster epidemiology and Assessment of post-disaster living conditions: it is important 

to know how basic services are: drinking and sewage water, environmental sanitation, electricity. From these reports, a 

preliminary damage assessment and needs analysis can be established. With all the information obtained: 

epidemiological information and morbidity/mortality, an evaluation of potential epidemic risks will be possible (Manual 

for the implementation of epidemiological surveillance in Disasters, MINSA (2004, Available at: 

https://www.gob.pe/institucion/minsa/informes-publicaciones/353483-manual-for-the-implementation-of-

epidemiological-surveillance-in-disasters (Accessed July 2022). 

The table 9 shows the post-disaster communicable diseases with epidemic potential. 

Table 9. Epidemic potential of post-disaster communicable diseases  

Syndrome Disease Likely source of contamination Risk 
potential 

 unspecified diarrhea Water, food, overcrowding, high temperatures, poor sanitation ++++ 
acute diarrheal Salmonella/Shigellosis +++ 
 Anger ++ 
 food poisoning +++ 
 Acute respiratory infections Overcrowding, Exposure to cold, shelter ++++ 
Respiratory Tuberculosis Overcrowding, low vaccination coverage + 
 Whooping cough Interruption of control programs ++ 
 Diphtheria  ++ 
Febrile Malaria 

Dengue 
Plague 
Typhus 

Presence of mosquito breeding ground, increase in temperature, 
accumulation of useless, inadequate water storage, unhygienic 
conditions, inadequate control of rodents 

+++ 
++ 
+ 
+ 

Acute jaundiced febrile Yellow fever Increase in vectors, endemic areas, low immunization coverage, 
migration of people, water/food contamination, no rodent control, 
inadequate sanitation 

++ 
 Hepatitis A +++ 
 Leptospirosis ++ 

Source: MINSA, (2004). Op. Cit. 

Taking into account the data collected in the mathematical model used (equation 1) and the established 

epidemiological data determined by MINSA (MINSA. (2004). Manual for the implementation of epidemiological 

surveillance in Disasters. Available at: https://www.gob.pe/institucion/minsa/informes-publicaciones/353483-manual-

para-la-implementacion-de-la-vigilancia-epidemiologica-en-desastres (Access July 2022)) (Table 10) it is possible to 

establish the following formula corresponding to the estimation of potential epidemic risk (EP) (equation 2): 

EP= y · CF (2) 

Where: 

EP= disease category (diarrhea, cholera, food poisoning, etc., (Table 10)) 

y = is the susceptibility value to mass landslide determined according to equation 1 

CF= is a proportionality factor that is determined according to the probability of contracting a disease associated 

https://www.gob.pe/institucion/minsa/informes-publicaciones/353483-manual-for-the-implementation-of-epidemiological-surveillance-in-disasters
https://www.gob.pe/institucion/minsa/informes-publicaciones/353483-manual-for-the-implementation-of-epidemiological-surveillance-in-disasters
https://www.gob.pe/institucion/minsa/informes-publicaciones/353483-manual-para-la-implementacion-de-la-vigilancia-epidemiologica-en-desastres
https://www.gob.pe/institucion/minsa/informes-publicaciones/353483-manual-para-la-implementacion-de-la-vigilancia-epidemiologica-en-desastres
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 With the contaminant present during the landslide or natural disaster. This value can be classified as low, 

medium, high and very high probability (Table 10); which for this mathematical model, was expressed quantitatively in 

0.249 = +, 0.499 = ++, 0.749 = +++ and 0.999 = ++++. 

Equation 2 is closely related to Figure 6, Estimation of potential epidemic risk. With this equation it is possible 

to establish the epidemic risk of a disease (EP value), knowing its risk potential (CF) and the mass landslide 

susceptibility value (y). The higher the landslide value, and the higher the risk value, there is a greater probability that a 

disease can occur in the natural disaster. Diseases such as tuberculosis, plague or typhus are less likely to represent an 

imminent danger when a landslide occurs, since it has a lower risk value (CF=0.249); while those diseases such as: 

unspecified diarrhea and acute respiratory infections, and to a lesser degree Salmonella, malaria and hepatitis (CF= 

0.999 and 0.749) must be attended to and controlled immediately in order to prevent their spread, since they are one of 

the first diseases to appear after the event occurred. In this sense, the epidemiological actions that the government must 

take for its control become imperative. In order to avoid massive infections, the rescue and epidemiological teams must 

provide the population with a drinking water system, initiate a massive, extensive and immediate vaccination program, 

provide non-perishable and highly nutritious food, and provide service for the discharge of sewage, located away from 

rivers and lakes that may be in contact with established shelters. 

 

Figure 6. Estimation of potential epidemic risk 

Final considerations 

The most appropriate generalized linear model, according to the types of variables, was the logistic link function, 

achieving a satisfactory discrimination capacity with AUC-ROC of 81.2%, which represented 9.27% with very high 

susceptibility, with a high susceptibility 23.4%, with medium susceptibility 33.92% and with low susceptibility 33.41% 

of the territory studied. 

The physical factors NDVI and distance to rivers presented a negative association with the susceptibility model, 

since the lower the values, the greater the susceptibility to massive landslides. On the other hand, the factors curvature 

of the profile, degrees of slope and TWI presented a positive association, since the higher the values, the greater the 

susceptibility to landslides. 

On the other hand, after a disaster, such as landslides, health care needs and priorities may change after the 

emergency phase, in this sense, the food security of refugees, the supply of drinking water, the disposal of excreta and 

solid waste, the need for shelters, care for personal hygiene needs, vector control, care for injuries after clean-up 

activities, and conducting public health surveillance priority. From these reports, a preliminary damage assessment and 

needs analysis can be established, and epidemiological and morbidity/mortality information can be provided for the 

evaluation of potential epidemic risks. In this sense, it was possible to formulate an equation with high potential that 

manages to correlate the magnitude of the landslide with the possible occurrences of permissible diseases. In this way, 

in figure 6, the potential epidemic risk of diseases with less danger (CF=0.249) of those more aggressive diseases (CF= 

0.999 and 0.749) can be estimated. The latter, if not attended to in time, are easily susceptible to being an epidemic 

regardless of the magnitude of the landslide that occurred. Therefore, immediate action by the authorities is imperative 

in order to control possible massive contagion, which makes actions such as: drinking water service, starting massive, 

extensive and immediate vaccination programs, providing non-perishable and highly nutritious, and provide service for 

wastewater discharges, locating them far from rivers and lakes in order to ensure health in established shelters. 
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