Caracterización bioquímica y biológica del veneno de la serpiente "tigra mariposa" (Bothrops venezuelensis Sandner 1952) de la región central de la Cordillera de la Costa Venezolana

Elda E. Sánchez, María E. Girón, María E. Girón, Nestor L. Uzcátegui, Nestor L. Uzcátegui, Belsy Guerrero, Belsy Guerrero, Max Saucedo, Max Saucedo, Esteban Cuevas, Esteban Cuevas, Alexis Rodríguez Acosta, Alexis Rodríguez Acosta

Resumen


Se aislaron fracciones del veneno de Bothrops venezuelensis que demuestran ser un espectro abundante de proteínas con actividades variadas (coagulante, hemorrágica, fibrinolítica, proteolítica y de función plaquetaria), para el análisis de sus propiedades físico-químicas y biológicas, el veneno fue fraccionado por cromatografía de exclusión molecular, corrido en una electroforesis en gel y realizada una batería de ensayos biológicos. La DL50 del veneno de B. venezuelensis fue 6,39 mg/kg de peso corporal, fue determinada inyectando intraperitonealmente en ratones, diluciones seriadas de veneno de B. venezuelensis. Se colectaron doce fracciones a partir del veneno de B. venezuelensis mediante cromatografía de exclusión molecular. Las fracciones 1-5 y 7-9 tenían actividad hemorrágica. Todas las fracciones, con la excepción de las fracciones 3 y 6, tenían actividad fibrinolítica. Ninguna de las fracciones tuvo actividad de gelatinasa significativa, y sólo fracciones 4-6 demostraron actividad en polvo azul de ocultamiento. Con la excepción de las fracciones 1 y 4 , todas hidrolizaron la cadena β de la insulina. Cada fracción del veneno, así como el veneno crudo mostraron actividad procoagulante, cuando se probó en un analizador Sonoclot. Las fracciones 1, 3 , 5 y 9 inhibieron la función plaquetaria. En este estudio se señalan actividades biológicas de un veneno poco estudiado (B. venezuelensis) y sus fracciones.

Palabras clave


Bothrops venezuelensis, hemostasia, hemorragia, fibrinólisis, función plaquetaria, veneno.

Texto completo:

PDF

Referencias


Assakura M. T., Silva C. A., Mentele R., Camargo A. C. & Serrano S. M. (2003). Molecular cloning and expression of structural domains of bothropasin, a P-III metalloproteinase from the venom of Bothrops jararaca. Toxicon. 41: 217-27.

Austen D. & Rhymes I. A. (1975). In: Mead, O. (Ed.), Laboratory Manual of Blood Coagulation. Blackwell Scientific Publications, Oxford,

England.

Bajwa S. S., Markland F. S. & Russell F. E. (1980). Fibrinolytic enzyme(s) in western diamondback rattlesnake (Crotalus atrox) venom. Toxicon. 18: 285-290.

Bello C. A., Hermogenes A. L., Magalhaes A., Veiga S. S., Gremski L. H., Richardson M., et al. (2006). Isolation and biochemical characterization of a fibrinolytic proteinase from Bothrops leucurus (white-tailed jararaca) snake venom. Biochimie. 88: 189-200.

Berger M., Pinto A. F. & Guimarães J. A. (2008) Purification and functional characterization of bothrojaractivase, a prothrombin-activating metalloproteinase isolated from Bothrops jararaca snake venom. Toxicon. 51: 488-501.

Calvete J. J., Borges A., Segura A., Flores-Díaz M., Alape-Girón A., Gutiérrez J. M., et al. (2009). Snake venomics and antivenomics of Bothrops colombiensis, a medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela: Contributing to its taxonomy and snakebite management. J. Proteomics. 72: 227-240.

Furtado M. F. (2005). Biological and immunological properties of the venom of Bothrops alcatraz, an endemic species of pitviper from Brazil. Comp. Biochem. Physiol C. Toxicol. Pharmacol. 141: 117-123.

Girón M. E., Salazar A. M., Aguilar I., Pérez J. C., Sánchez E. E., Arocha-Piñango C. L., et al. (2008). Hemorrhagic, coagulant and fibrino(geno) lytic activities of crude venom and fractions from mapanare (Bothrops colombiensis) snakes. Comp. Biochem. Physiol C. Toxicol. Pharmacol. 147: 113-121.

Girón M. E., Guerrero B., Salazar A. M., Sánchez E. E., Alvarez M. & Rodríguez-Acosta A. (2013). Functional characterization of fibrinolytic metalloproteinases (colombienases) isolated from Bothrops colombiensis venom. Toxicon. 74: 116-26.

Gregoriani T. & De Sousa L. (2005). Sima Talpa Bothrops, serranía del Turimiquire, estado Anzoátegui, Venezuela. Saber. 17: 84-87.

Gutiérrez J. M., Escalante T. & Rucavado A. (2009). Experimental pathophysiology of systemic alterations induced by Bothrops asper snake venom. Toxicon. 54: 976-987.

Huang S. Y. & Perez J. C. (1980). Comparative study on hemorrhagic and proteolytic activities of snake venoms. Toxicon. 18: 421-426.

Kini R. M. (2006). Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem. J. 397: 377-387.

Laemmli U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685.

Larréché S., Mion G. & Goyffon M. (2008). Haemostasis disorders caused by snake venoms. Ann. Fr. Anesth. Reanim. 27: 302-309.

Loria G. D., Rucavado A., Kamiguti A. S., Theakston R. D, Fox J. W., Alape A., et al. (2003). Characterization of 'basparin A,' a prothrombinactivating metalloproteinase, from the venom of the snake Bothrops asper that inhibits platelet aggregation and induces defibrination and thrombosis. Arch. Biochem. Biophys. 418: 13-24.

Markland Jr. F. S.(1998). Snake venom fibrinogenolytic and fibrinolytic enzymes: anupdated inventory. Thromb. Haemost. 79: 668-

Maruyama M., Kamiguti A. S., Tomy S. C., Antonio L. C., Sugiki M. & Mihara H. (1992). Prothrombin and factor X activating properties

of Bothrops erythromelas venom. Ann. Trop. Med. Parasitol. 86: 549-556.

Modesto J. C., Junqueira-de-Azevedo I. L., Neves-Ferreira A. G., Fritzen M., Oliva M. L., Ho P. L., et al. (2005). Insularinase A, a

prothrombin activator from Bothrops insularis venom, is a metalloprotease derived from a gene encoding protease and disintegrin domains. Biol. Chem. 386: 589-600.

Morita T. (2005). Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-,

and platelet-modulating activities. Toxicon. 45: 1099-1114.

Moura-da-Silva A. M., Cardoso D. F & Tanizaki M. M. (1990). Differences in distribution of myotoxic proteins in venoms from different

Bothrops species. Toxicon. 28: 1293-1301.

Nahas L., Kamiguti A. S. & Barros M. A. (1979). Thrombin-like and factor X-activator components of Bothrops snake venoms. Thromb. Haemost. 41: 314-328.

Navarrete L. F., López-Johnston J. C. & BlancoDávila A. (2009). Guía de las serpientes de Venezuela. Biología, venenos, conservación y

listado de especies. Gráficas ACEA, Caracas, Venezuela, 103 pp.

NIH, Principles of Laboratory Animal Care (1985). National Institute of Health of United States, Maryland, p. 1-86. Omori-Satoh T., Sadahiro S., Ohsaka A. & Murata

R. (1972). Purification and characterization of an antihemorrhagic factor in the serum of Trimeresurus flavoviridis, a crotalid. Biochim.

Biophys. Acta. 285: 414-426.

Queiroz G. P., Pessoa L. A., Portaro F. C., Furtado Mde F. & Tambourgi D. V. (2008). Interspecific variation in venom composition

and toxicity of Brazilian snakes from Bothrops genus. Toxicon. 52: 842-851.

Rengifo C. & Rodríguez-Acosta A. (2004). Serpientes, venenos y su tratamiento en Venezuela. Fondo de Publicaciones de la Facultad de Medicina de la Universidad Central de Venezuela, Caracas, p.1-80.

Rinderknecht H., Geokas M. C., Silverman P. & Haverback B. J. (1968). A new ultrasensitive method for the determination of proteolytic

activity. Clin. Chim. Acta. 21: 197-203.

Rivas G. & Oliveros O. (1997). Herpetofauna del Estado Sucre, Venezuela: Lista preliminar de reptiles. Soc. Cien. Nat. La Salle. 57: 67-80.

Rodríguez-Acosta A., Márquez A., Salazar A. M., Girón M. E., Carvajal Z., Ibarra C., et al. (2010). Hemostatic properties of Venezuelan Bothrops snake venoms with special reference to Bothrops isabelae venom. Toxicon. 56: 926-935.

Salazar A. M., Rodríguez-Acosta A., Girón M. E., Aguilar I. & Guerrero B. (2007). A comparative analysis of the clotting and fibrinolytic activities of the mapanare (Bothrops atrox) snake venom from different geographical areas in Venezuela. Thromb. Res. 120: 95-104.

Sánchez E. E., Rodríguez-Acosta A., Palomar R., Lucena S. E., Bashir S., Soto J. G., et al. (2009). Colombistatin: a disintegrin isolated from the0venom of the South American snake (Bothrops colombiensis) that effectively inhibits platelet aggregation and SK-Mel-28 cell adhesion. Arch. Toxicol. 83: 271-279.

Sánchez E. E., Rodríguez-Acosta A., Cantu E. & Guerrero B. (2010). Antivenoms and Coagulation. In: Kini R. M., Clemetson K. J., Markland F. S., McLane M. A., Morita. Toxins and Hemostasis from Bench to Bedside. Editorial Springer Dordrecht Heidelberg London New York.

Senis Y. A., Kim P. Y., Fuller G. L. J., Garcia A., Prabhakar S., Wilkinson M. C., et al. (2006). Isolation and characterization of cotiaractivase, a novel low molecular weight prothrombin activator from the venom of Bothrops cotiara. Biochim. Biophys. Acta. 1764: 863-871.

Seoane A. I., Tran V. L., Sánchez E. E., White S. A., Choi J. L., Gaytán B., et al. (2007).The mojastin mutant Moj-DM induces apoptosis of the human melanoma SK-Mel-28, but not the mutant MojNN nor the non-mutated recombinant Moj-WN. Gene. 389: 66-72.

Silva M. B., Schattner M., Ramos C. R., Junqueirade-Azevedo I. L., Guarnieri M. C., Lazzari M. A., et al. (2003). A prothrombin activator from Bothrops erythromelas (jararaca-da-seca) snake venom: characterization and molecular cloning. Biochem. J. 369: 129-139.

Spearman-Karber R. (1978). Alternative methods of analysis for quantal responses. In: Finney, D. (Ed.), Statistical Method in Biological Assay. Charles Griffin, London.

Xu W., Li Z. Q., Wu S. Y. & Wu S. G. (2005). Structural and functional characterization of snake venom disintegrins. Chin. Pharmacol. Bull. (Chin). 21: 17-22.

Zhang Y. & Rui J. (2007). Research progress of snake venom disintegrin in treatment of tumor. Chin. J. Clin. Pharmacol. Ther. (Chin). 12: 984-988.


Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2021 Boletín de Malariología y Salud Ambiental