Estimation of potential epidemic risk in the landslide zone based on physical factors in the Sillapa district

Luis Eduardo Oré Cierto, Ahnel Karen Zelaya Moya, Wendy Caroline Loarte Aliaga, Jorge Rafael Diaz Dumont, Gianmarco Garcia Curo, Adiel Alvarez Ticllasuca, José Torres Huamaní, Andres Olivera Chura, Atilio Rodolfo Buendía Giribaldi

Resumen


Almost 17% of causes of death due to natural hazards are the product of landslides. Most of them occur in the most deprived places of less developed countries, coexisting a lethal combination of factors that point to this type of tragedies: the natural and the human factor. On the other hand, after a disaster, health care needs and priorities may change; in this sense, the food security of refugees, the supply of drinking water, the disposal of excreta and solid waste, the need for shelters, attention to personal hygiene needs, vector control, attention to injuries after the cleanup activities and the conduct of public health surveillance becomes a priority. To mitigate the disruption, public health authorities must act promptly to avert the adverse effects of the disaster, prevent further damage, and restore public service delivery as soon as possible. In this sense, public health surveillance, epidemiology, can identify local problems and establish priorities for decision-making in the health area. In this article, mention is made of one of the most alarming events that occurred in Sillapata, Peru, where a level 4 landslide affected the infrastructure of the population. Considering an established statistical model, it is possible to predict the zoning of higher risks, and thus establish the most appropriate territorial planning and epidemiological surveillance when similar events reach this population or other populations of the Peruvian State.


Palabras clave


landslide, landslide predictive models, epidemiology surveillance, epidemiological control

Texto completo:

PDF (ENGLISH)

Referencias


Abbood, D. W., Ahmed, E., & Gubashi, K. R. (2018). Hospital wastewater treatment using mixed media biofilter. Int J Civil Eng Technol. 9(5), 1188–1201. Disponible en: https://micromanagementinc.com/clients/hospitals/?gclid=Cj0KCQiA-oqdBhDfARIsAO0TrGEdPG_Vp0_zE6w60_wnF6XMpWOkfN_jwTWexMYR8kmihTKunou45j0aAi02EALw_wcB. Acceso agosto 2022.

Abedi, T., & Mojiri, A, (2019). Constructed wetland modified by biochar/zeolite addition for enhanced wastewater treatment. Environ. Technol. Innov. 16, 100472. https://doi.org/10.1016/j.eti.2019.100472.

Ahmed, E., Pramanik, B. K., Fatihah, S., & Shahrom, Z. (2012). Biological aerated filters (BAFs) for carbon and nitrogen removal: a review. J Eng Sci Technol, 7(4), 428–446. Disponible en: https://jestec.taylors.edu.my/Vol%207%20Issue%204%20August%2012/Vol_7_4_428-446_%20PRAMANIK%20BIPLOB.pdf (Acceso agosto 2022.

Al-Wasify, R. S., Ali, M. N., & Hamed, S. R. (2017). Biodegradation of dairy wastewater using bacterial and fungal local isolates. Water science and technology : a journal of the International Association on Water Pollution Research, 76(11-12), 3094–3100. https://doi.org/10.2166/wst.2017.481.

Borkar, R. P., Gulhane, M. L., & Kotangale, A. J. (2013). Moving bed biofilm reactor—a new perspective in wastewater treatment. IOSR J Environ Sci, Toxicol Food Technol, 6(6), 15–21. Disponible en: https://www.iosrjournals.org/iosr-jestft/papers/vol6-issue6/C0661521.pdf (Acceso agosto 2022.

Chandana Lakshmi, M., Harsha, N., Kumar, K. V., Rani, K., & Sridevi, V. (2013). Biofiltration and its application in treatment of air and water pollutants—a review. Int J Appl Innov Eng Manag 2(9), 226–231. Disponible en: https://www.ijaiem.org/volume2issue9/IJAIEM-2013-09-24-055.pdf Acceso agosto 2022.

Chang, J., Mei, J., Jia, W., Chen, J., Li, X., Ji, B., & Wu, H. (2019). Treatment of heavily polluted river water by tidal-operated biofilters with organic/inorganic media: Evaluation of performance and bacterial community. Bioresource technology, 279, 34–42. https://doi.org/10.1016/j.biortech.2019.01.060.

D.S. N° 003-2010-MINAM (Disponible en: https://www.minam.gob.pe/disposiciones/decreto-supremo-n-003-2010-minam/. Acceso agosto 2022.

Feng, L., Jia, L., Wang, R., & Wu, H. (2020). Can biochar application improve nitrogen removal in constructed wetlands for treating anaerobically-digested swine wastewater? Chem. Eng. J., 379, 122273. http://dx.doi.org/10.1016/j.cej.2019.122273.

Garkal, D. J., Mapara, J. V., & Mandar, P. (2015). Domestic wastewater treatment by bio-filtration: a case study. Int J Sci, Environ Technol 4(1), 140–5. Disponible en: https://www.ijset.net/journal/524.pdf Acceso agosto 2022.

Gogina, E., & Yantsen, O. (2018). Modeling of processes of wastewater treatment from nitrogen compounds in the trickling biofilter. MATEC Web of Conferences, 251, 03041 IPICSE-2018.

Greenstein, K. E., Lew, J., Dickenson, E. R. V., & Wert, E. C. (2018). Investigation of biotransformation, sorption, and desorption of multiple chemical contaminants in pilot-scale drinking water biofilters. Chemosphere, 200, 248–256. https://doi.org/10.1016/j.chemosphere.2018.02.107.

Gwenzi, W., Chaukura, N., Noubactep, C., & Mukome, F. N. D. (2017). Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. Journal of environmental management, 197, 732–749. https://doi.org/10.1016/j.jenvman.2017.03.087.

Hidalgo, C. (2018). Propuesta de Diseño de una Planta de Tratamiento de Aguas Residuales. Lima: Universidad César Vallejo. Disponible en: https://repositorio.ucv.edu.pe/handle/20.500.12692/26755. Acceso agosto 2022.

Ji, B., Liu, R., Ren, B., Zhao, Y., & Wei, T, (2020). Constructed treatment wetland: glance of development and future perspectives. Water Cycle, 1, 104e112. https://doi.org/10.3390/pr9111917.

Jia, L., Liu, H., Kong, Q., Li, M., Wu, S., & Wu, H. (2020). Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater. Water research, 169, 115285. https://doi.org/10.1016/j.watres.2019.115285.

Jia, W., Sun, X., Gao, Y., Yang, Y., & Yang, L. (2020). Fe-modified biochar enhances microbial nitrogen removal capability of constructed wetland. The Science of the total environment, 740, 139534. https://doi.org/10.1016/j.scitotenv.2020.139534.

Kaetzl, K., Lübken, M., Uzun, G., Gehring, T., Nettmann, E., Stenchly, K., & Wichern, M. (2019). On-farm wastewater treatment using biochar from local agroresidues reduces pathogens from irrigation water for safer food production in developing countries. The Science of the total environment, 682, 601–610. https://doi.org/10.1016/j.scitotenv.2019.05.142.

Kosolapov, D. B., Kuschk, P., Müller, R. A., Vainshtein, M. B., Vatsourina, A. V., Wiessner, A., & K€ astner, M. (2004). Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng. Life Sci., 4(5), 403e411. https://doi.org/10.1002/ELSC.200420048.

Lau, A. Y., Tsang, D. C., Graham, N. J., Ok, Y. S., Yang, X., & Li, X. D. (2017). Surface-modified biochar in a bioretention system for Escherichia coli removal from stormwater. Chemosphere, 169, 89–98. https://doi.org/10.1016/j.chemosphere.2016.11.048.

Li, Q., Yu, S., Li, L., Liu, G., Gu, Z., Liu, M., Liu, Z., Ye, Y., Xia, Q., & Ren, L. (2017). Microbial Communities Shaped by Treatment Processes in a Drinking Water Treatment Plant and Their Contribution and Threat to Drinking Water Safety. Frontiers in microbiology, 8, 2465. https://doi.org/10.3389/fmicb.2017.02465.

Liu, Q., Zhou, Y., Chen, L., & Zheng, X. (2010). Application of MBR for hospital wastewater treatment in China. Desalination, 250(2), 605–608. https://doi.org/10.1016/j.desal.2009.09.033.

Lopez, L (2015). Planta de tratamiento de aguas residuales para reuso en riego de parques y jardines en el Distrito de la Esperanza provincia Trujillo. La Libertad. Trujillo. Disponible en: epositorio.upao.edu.pe/bitstream/20.500.12759/1981/1/REP_ING.CIVIL_RODRIGO.LOPEZ_KATHLEEN.HERRERA_PLANTA.TRATAMIENTO.AGUAS.RESIDUALES.REUSO.RIEGO.PARQUES.JARDINES.DISTRITO.LA.ESPERANZA.TRUJILLO.LA.LIBERTAD.pdf. Acceso diciembre 2022.

Lopez, L. (2015). Planta de tratamiento de aguas residuales para reuso en riego de parques y jardines en el Distrito de la Esperanza provincia Trujillo. La Libertad. Trujillo. Disponible en: https://repositorio.upao.edu.pe/bitstream/20.500.12759/1981/1/REP_ING.CIVIL_RODRIGO.LOPEZ_KATHLEEN.HERRERA_PLANTA.TRATAMIENTO.AGUAS.RESIDUALES.REUSO.RIEGO.PARQUES.JARDINES.DISTRITO.LA.ESPERANZA.TRUJILLO.LA.LIBERTAD.pdf. Acceso agosto 2022.

Mahvi, A. H., Naddafi, K., Naghizadeh, A., & Vaezi, F. (2008). Evaluation of hollow fiber membrane bioreactor efficiency for municipal wastewater treatment. Iran J Environ Health Sci Eng 5(4), 257–268. https://doi.org/10.2166/wst.2017.481.

Mane, A. V., Porwal, H. J., & Velhal, S. G. (2015). Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. Water Res Ind, 9, 1–15. https://doi.org/10.1016/j.wri.2014.11.002.

Mesdaghinia, A., Mahvi, A., Saeedi, R., & Pishrafti, H. (2010). Upflow Sludge Blanket Filtration (USBF): an Innovative Technology in Activated Sludge Process. Iranian journal of public health, 39(2), 7–12. Disponible en: https://pubmed.ncbi.nlm.nih.gov/23113000/ Acceso agosto 2022.

Quispe Pulido, A., & Casimiro Vidal, W. (2019). Evaluación de la eficiencia entre dos sistemas de biofiltros para el tratamiento de las aguas residuales domesticas de la localidad de Carapongo, Lurigancho-Chosica. Cátedra Villarreal, 7(1), 66–83. https://doi.org/10.24039/cv201971325.

Rivera Vergara, D. A. (2016). Humedales de flujo subsuperficial como biofiltros de aguas residuales en Colombia. Cuaderno Activa, 7(1), 99–108. Disponible en: https://ojs.tdea.edu.co/index.php/cuadernoactiva/article/view/25. Acceso agosto 2022.

Tonon, D., Tonetti, A. L., Coraucci Filho, B., & Bueno, D. (2015). Wastewater treatment by anaerobic filter and sand filter: hydraulic loading rates for removing organic matter, phosphorus, pathogens and nitrogen in tropical countries. Ecol Eng 82, 583–592. Disponible en: https://www.semanticscholar.org/paper/Wastewater-treatment-by-anaerobic-filter-and-sand-Tonon-Tonetti/3b082277818afac9ac82d0508c5bdd10acee9d26. Acceso agosto 2022.

Tripathia, S. & Hussain, T. (2022). Biofiltration treatment of wastewater through microbial ecology. In book: An Innovative Role of Biofiltration in Wastewater Treatment Plants (WWTPs), 19-44. http://dx.doi.org/10.1016/B978-0-12-823946-9.00005-X.

Vasquez, S. 2017). Análisis de la eficiencia de un prototipo de Biofiltro en el tratamiento de aguas residuales para riego en Trapiche, Comas, 2017. Universidad César Vallejo. Disponible en: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/22235/Vasquez_PSJ.pdf?sequence=1&isAllowed=y. Acceso agosto 2022.

Vymazal, (2011). Op. Cit.; Kumar, S., & Dutta, V. (2019). Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: an overview. Environmental science and pollution research international, 26(12), 11662–11673. https://doi.org/10.1007/s11356-019-04816-9.

Vymazal, J. (2011). Constructed wetlands for wastewater treatment: five decades of experience. Environmental science & technology, 45(1), 61–69. https://doi.org/10.1021/es101403q.

Vymazal, J., & Březinová, T. (2015). The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environment international, 75, 11–20. https://doi.org/10.1016/j.envint.2014.10.026.

WSP-LAC. (2006). Biofiltro: Una opción sostenible para el tratamiento de aguas residuales en pequeñas localidades, Disponible en:

Zerbini, T., Gianvecchio, V. A. P., Regina, D., Tsujimoto, T., Ritter, V., & Singer, J. M. (2018). Suicides by hanging and its association with meteorological conditions in São Paulo. Journal of forensic and legal medicine, 53, 22–24. https://doi.org/10.1016/j.jflm.2017.10.010.


Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2023 Boletín de Malariología y Salud Ambiental