Estructura genética de Aedes aegypti latinoamericano

Marifel Carrozza, Yasmin Rubio Palis, Flor Herrera

Resumen


El mosquito Aedes aegypti es el principal vector del Dengue en los países latinoamericanos. En este estudio se investigó la estructura genética de este vector en muestras colectadas en Venezuela, Colombia, Perú, Mexico, Argentina, Puerto Rico y Guyana Francesa. Nosotros examinamos la distribución de una región de 246 pares de bases del gen mitochondrial de la subunidad 4 de la NADH deshidrogenasa entre un total de 369 Ae. aegypti de todas las poblaciones. Este gen fue amplificado por la reacción en cadena de la polimerasa y la variación se determinó usando el análisis de polimorfismos de conformación de cadena simple. Doce haplotipos se detectaron entre todos los países y se repartieron en dos clados. Una diferenciación significativa se detectó entre las poblaciones y estas no se encontraron genéticamente aisladas por distancia

Palabras clave


Dengue, Aedes aegypti, ND4, haplotipos, diferenciación, genética.

Texto completo:

PDF

Referencias


Álvarez G., Oviedo A. & Briceño A. (2008). Evaluación de Temephos 50% CE sobre poblaciones de Aedes aegypti (Diptera: Culicidae)

en Trujillo, Venezuela. Rev. Colomb. Entomo. 34:

-191.

Ayres C., Melo-Santos M., Prota J., Solé-Cava A., Regis L. & Furtado A. (2004). Genetic structure of natural populations of Aedes aegypti at the micro- and macrogeographic levels in Brazil. J.

Am. Mosq. Control Assoc. 20: 350-356.

Bisset J., Rodriguez M., Molina D., Díaz C. & Soca L. (2001). High esterases as mechanism of resistance to organophosphate insecticides in Aedes aegypti strains. Rev. Cubana Med. Trop. 53: 37-43.

Black W., Bennett K., Gorrochotegui-Escalante N., Barillas-Mury C., Fernandez-Salas I., Muñoz M., et al. (2002). Flavivirus Susceptibility in Aedes aegypti. Arch. Med. Res. 33: 379–388.

Black W. & Bernhardt S. (2009). Abundant nuclear copies of mitochondrial origin (NUMTs) in the Aedes aegypti genome. Insect Mol. Biol. 18: 705-713.

Black W. & Du Teau N. (1997). RAPD-PCR and SSCP analysis for insect population genetic studies. pp. 361-373. In: The Molecular Biology of Insect Disease Vectors: A Methods Manual. Eds.

Crampton J., Beard C.B., Louis C. Chapman and Hall. New York, U.S.A.

Bosio C., Harrington L., Jones J., Sithiprasasna R. & Norris D. (2005). Genetic Structure of Aedes aegypti populations in Thailand using Mitocondrial DNA. Am. J. Trop. Med. Hyg. 72: 434-442.

Bracco J., Capurro M., Lourenco-de-Oliveira R. & Mureb Sallum M. (2007). Genetic variability of Aedes aegypti in the Americas using a mitocondrial gene: evidence of multiple introductions. Mem.

Inst. Oswaldo Cruz. 102: 573-580.

Burugu M., Sang R., Kamau L. & Kenya E. (2008). Genetic structure of Aedes aegypti populations in coastal and inland Kenya using mitochondrial DNA. Submitted Centre for Virus Research, Kenya

Medical Research Institute, Nairobi, Kenya. EMBL/GenBank/ databases.

Costa da Silva A., Capurro M. & Bracco J. (2005). Genetic lineages in the yellow fever mosquito Aedes(Stegomyia) aegypti (Diptera: Culicidae) from Perú. Mem. Inst. Oswaldo Cruz. 100: 539-544.

Da Costa-Ribeiro M., Lourenco-de-Oliveira R. & Failloux A. (2007). Low Gen Flow of Aedes aegypti between Dengue-Endemic and DengueFree areas in Southeastern and Southern Brazil.

Am. J. Trop. Med. Hyg. 77: 3003-309. Excoffier L., Laval G. & Schneider S. (2005). Arlequin ver 3.0: An Integrated Software Package for Population Genetics Data Analysis. Evol.

Bioinform. online 1: 47-50.

Excoffier L., Smouse P. & Quattro J. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data.

Genetics. 131: 479-491. Felsenstein J. (2004). PHYLIP, Phylogeny Inference Package. Version 3.6C. Seattle, WA, University of

Washington.

Fraga E., Oliveira D., Aragão D., Schneider H., Sampaio I. & Barros M. (2013). Genetic variability and evidence of two distinct lineages of Aedes aegypti (Diptera, Culicidae) on São Luís Island in

Maranhão, Brazil. The Open Trop. Med. J. 6: 11-

doi: 10.2174/1874315301306010011.

García-Franco F., Muñoz L., Lozano-Fuentes S., Fernández-Salas I., García-Rejon J., Beaty B., et al. (2002). Large genetic distances among Aedes aegypti populations along the South Pacific coast

of Mexico. Am. J. Trop. Med. Hyg. 66: 594-598.

Getis A., Morrison A., Kenneth G. & Scott T. (2003). Characteristics of the Spatial Pattern of the Dengue Vector, Aedes aegypti, in Iquitos, Peru. Am. J. Trop. Med. Hyg. 69: 494–505.

Gonçalves da Silva A., Cunha I., Santos W., Ribolla L. & Fernando Abad-Franch F. (2012). Gene

flow networks among American Aedes aegypti populations. Evol. Appl. 5: 664–676. doi:10.1111/j.1752-4571.2012.00244.x

Gonçalves C., Melo F., Bezerra J., Chaves B., Silva B., .Silva L., et al. (2014). Distinct variation in vector competence among nine field populations of Aedes aegypti from a Brazilian Dengue-endemic

risk city. Parasites & Vectors. 7: 320-327.

Gorrochotegui-Escalante N., Gómez-Machorro C., Lozano-Fuentes S., Fernández-Salas I., Muñoz M., Farfan-Ale J., et al. (2002). Breeding structure of Aedes aegypti populations in Mexico varies by

region. Am. J. Trop. Med. Hyg. 66: 213-222.

Gorrochotegui-Escalante N., Munoz M., FernandezSalas I., Beaty B. & Black W. (2000). Genetic isolation by distance among Aedes aegypti populations along the northeastern coast of

Mexico. Am. J. Trop. Med. Hyg. 62: 200–209.

Harrington C., Scott T., Lerdthusnee K., Coleman R., Costero A., Clark G., et al. (2005). Dispersal of the Dengue vector Aedes aegypti within and between rural communities. Am. J. Trop. Med. Hyg. 72: 209-220.

Herrera F., Urdaneta L., Rivero J., Zoghbi N., Ruiz J. & Carrasquel G. (2006). Population genetic structure of Dengue mosquito Aedes aegypti in Venezuela. Mem. Inst. Oswaldo Cruz. 101: 625-633.

Librado P. & Rozas J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 25: 1451-1452.

Liotta D., Cabanne G., Campos R. & Tonón S. (2005). Molecular detection of Dengue viruses in field caught Aedes aegypti mosquitoes from northeastern Argentina. Rev. Latinoam. Microbiol.

: 82-87.

Lourenço-de-Oliveira R., Vazeille M., de Filippis A. & Failloux A. (2004). Aedes aegypti in Brazil: genetically differentiated populations with high susceptibility to Dengue and yellow fever viruses. Tran. R. Soc. Trop. Med. Hyg. 98: 43-54.

Manguin S. & Boëte Ch. (2011). Global Impact of Mosquito Biodiversity, Human Vector-Borne Diseases and Environmental Change. pp. 27-50. In: The Importance of Biological Interactions in

the Study of Biodiversity. Ed. López-Pujol J. Tech. Rijeka, Croatia.

Monteiro F., Shama R., Martins A., Gloria-Soria A., Brown J. & Pow J. (2014). Genetic Diversity of Brazilian Aedes aegypti: Patterns following an Eradication Program. PLoS Negl. Trop. Dis. 8:e3460.

Moore M., Sylla M., Goss L., Burugu M., Sang R., Kamau L., et al. (2013). Dual African Origins of Global Aedes aegypti s.l. Populations Revealed by Mitochondrial DNA. PLoS Negl. Trop. Dis. 7:e2175.

Mourya D., Kumar R., Barde P., Gokhale M. & Yadav P. (2015). Genetic Variation in Aedes aegypti mosquito populations along the West Cost of India and their susceptibility to insecticides and Dengue Virus. Med. Sci. 5: 378-382.

Nei M. (1987). Molecular Evolutionary Genetics. Ed. Columbia University Press. New York, U.S.A. Ocampo C. & Wesson D. (2004). Population dynamics of Aedes aegypti from a Dengue hyperendemic urban setting in Colombia. Am. J. Trop. Med. Hyg.

: 506-513.

Orita M., Iwahana H., Kanazawa H., Hayashi K. & Sekiya T. (1989). Detection of polymorphisms of human DNA by gel electrophoresis as singlestrand conformation polymorphisms. Proc. Natl.

Acad. Sci. USA. 86: 2766 –2770. Paduan K. & Ribolla P. (2008). Mitochondrial DNA polymorphism and heteroplasmy in populations of Aedes aegypti in Brazil. J. Med. Entomol. 45: 59-67.

Paupy C., Chantha N., Vazeille M., Reynes J., Rodhain F. & Failloux A. (2003). Variation over space and time of Aedes aegypti in Phnom Penh (Cambodia): genetic structure and oral susceptibility to a Dengue virus. Genet. Res. 82: 171-82.

Rivero J., Urdaneta L., Zoghbi N., Pernalete M., Rubio-Palis Y. & Herrera F. (2004). Optimization of extraction procedure for mosquito DNA suitable for PCR-based techniques. Intern. J. Trop. Insect Sci. 24: 266-269.

Rodríguez M., Bisset J., de Fernández D., Lauzan L. & Soca A. (2001). Detection of insecticide resistance in Aedes aegypti (Diptera: Culicidae) from Cuba and Venezuela. J. Med. Entomol. 38:623-628.

San Martín J., Brathwaite O., Zambrano B., Solórzano J., Bouckenooghe A., Dayan G., et al. (2010). The epidemiology of Dengue in the americas over the last three decades: a worrisome reality. Am. J. Trop. Med. Hyg. 82: 128-35.

Sharma A., Mendki M., Tikar S., Chandel K., Sukumaran D. & Parashar B. (2009). Genetic variability in geographical populations of Culex quinquefasciatus Say (Diptera: Culicidae) fron

India based on random amplified polymorphic DNA analysis. Acta Trop. 112: 71-76.

Slatkin M. (1993). Isolation by distance in equilibrium and non-equilibrium populations. Evolution. 47:264-279.

Sousa L. & Scaparssa V. (2009). Evidence of two lineages of the Dengue vector Aedes aegypti in the Brazilian Amazon, based on mitochondrial DNA ND4 gene sequences. Genet. Mol. Biol. 32: 414-422.

Sunnucks P., Wilson A., Beheregaray L., Zenger K., French J. & Taylor A. (2000). SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Mol. Eco. 9: 1699-1710.

Tabachnick W. (1991). The yellow fever mosquito: evolutionary genetics and arthropod-borne disease. Am. Entomol. 37: 14–24.

Tajima F. (1983). Evolutionary relationship of DNA sequences in finite populations. Genetics. 105:437-460.

Tamura K., Dudley J., Nei M. & Kumar S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.

Thompson J., Higgins D. & Gibson T. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap

penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.

Tran K., Vazeille-Falcoz M., Mousson L., Tran H., Rodhain F., Ngugen T., et al. (1999). Aedes aegypti in Ho Minh City (Viet Nam): susceptibility to Dengue 2 virus and genetic differentiation. Trans

R. Soc. Trop. Med. Hyg. 93: 581-586.

Twerdochlib A., Bona A., Leite S., Chitolina R., Westphal B. & Navarro-Silva M. (2012). Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene. Rev. Bras. Entomol. 56: 249-256.

Vazeille-Falcoz M., Mousson L., Rodhain F., Chungue E. & Failloux A. (1999). Variation in oral susceptibility to Dengue type 2 virus of

populations of Aedes aegypti from the islands of Tahiti and Moorea, French Polynesia. Am. J. Trop. Med. Hyg. 60: 292-299.

Vazeille-Falcoz M., Mousson L., Rakatoarivony I., Villeret R., Rodhain F., Duchemin J. & Failloux A. (2001). Population genetic structure and competence as a vector for Dengue type 2 virus

of Aedes aegypti and Aedes albopictus from Madagascar. Am. J. Trop. Med. Hyg. 65: 491-497.

Vorou R. (2016). Zika virus, vectors, reservoirs, amplifying hosts, and their potential to spread world wide: what we know and what we should investigate today. International Journal of Infectious Diseases. 48: 85-90.

WHO (2014). Epidemiological alert Chikungunya and Dengue fever in the Americas. Available at: http://www.paho.org/hq/index.

p h p ? o p t i o n = c o m _ d o c m a n & t a s k = d o c _ view&gid=27049+&Itemid=999999&.


Enlaces refback

  • No hay ningún enlace refback.




Copyright (c) 2021 Boletín de Malariología y Salud Ambiental